129 research outputs found

    Existence of Dλ-cycles and Dλ-paths

    Get PDF
    A cycle of C of a graph G is called a Dλ-cycle if every component of G − V(C) has order less than λ. A Dλ-path is defined analogously. In particular, a D1-cycle is a hamiltonian cycle and a D1-path is a hamiltonian path. Necessary conditions and sufficient conditions are derived for graphs to have a Dλ-cycle or Dλ-path. The results are generalizations of theorems in hamiltonian graph theory. Extensions of notions such as vertex degree and adjacency of vertices to subgraphs of order greater than 1 arise in a natural way

    On dominating and spanning circuits in graphs

    Get PDF
    An eulerian subgraph of a graph is called a circuit. As shown by Harary and Nash-Williams, the existence of a Hamilton cycle in the line graph L(G) of a graph G is equivalent to the existence of a dominating circuit in G, i.e., a circuit such that every edge of G is incident with a vertex of the circuit. Important progress in the study of the existence of spanning and dominating circuits was made by Catlin, who defined the reduction of a graph G and showed that G has a spanning circuit if and only if the reduction of G has a spanning circuit. We refine Catlin's reduction technique to obtain a result which contains several known and new sufficient conditions for a graph to have a spanning or dominating circuit in terms of degree-sums of adjacent vertices. In particular, the result implies the truth of the following conjecture of Benhocine et al.: If G is a connected simple graph of order n such that every cut edge of G is incident with a vertex of degree 1 and d(u)+d(v) > 2(1/5n-1) for every edge uv of G, then, for n sufficiently large, L(G) is hamiltonian

    Existence of spanning and dominating trails and circuits

    Get PDF
    Let T be a trail of a graph G. T is a spanning trail (S-trail) if T contains all vertices of G. T is a dominating trail (D-trail) if every edge of G is incident with at least one vertex of T. A circuit is a nontrivial closed trail. Sufficient conditions involving lower bounds on the degree-sum of vertices or edges are derived for graphs to have an S-trail, S-circuit, D-trail, or D-circuit. Thereby a result of Brualdi and Shanny and one mentioned by Lesniak-Foster and Williamson are improved

    3-Connected line graphs of triangular graphs are panconnected and 1-hamiltonian

    Get PDF
    A graph is k-triangular if each edge is in at least k triangles. Triangular is a synonym for 1-triangular. It is shown that the line graph of a triangular graph of order at least 4 is panconnected if and only if it is 3-connected. Furthermore, the line graph of a k-triangular graph is k-hamiltonian if and only if it is (k + 2)-connected (k ≥ 1). These results generalize work of Clark and Wormald and of Lesniak-Foster. Related results are due to Oberly and Sumner and to Kanetkar and Rao

    Cycles containing many vertices of large degree

    Get PDF
    AbstractLet G be a 2-connected graph of order n, r a real number and Vr=v ϵ V(G)¦d(v)⩾r. It is shown that G contains a cycle missing at most max {0, n − 2r} vertices of Vr, yielding a common generalization of a result of Dirac and one of Shi Ronghua. A stronger conclusion holds if r⩾13(n+2): G contains a cycle C such that either V(C)⊇Vr or ¦ V(C)¦⩾2r. This theorem extends a result of Häggkvist and Jackson and is proved by first showing that if r⩾13(n+2), then G contains a cycle C for which ¦Vr∩V(C)¦is maximal such that N(x)⊆V(C) whenever x ϵ Vr − V(C) (∗). A result closely related to (∗) is stated and a result of Nash-Williams is extended using (∗)

    Even graphs

    Get PDF
    A nontrivial connected graph G is called even if for each vertex v of G there is a unique vertex [bar v] such that d(v,[bar v]) = diam G. Special classes of even graphs are defined and compared to each other. In particular, an even graph G is called symmetric if d(u,v) + d(u,[bar v]) = diam G for all u, v V(G). Several properties of even and symmetric even graphs are stated. For an even graph of order n and diameter d other than an even cycle it is shown that n ≥ 3d - 1 and conjectured that n ≥ 4d - 4. This conjecture is proved for symmetric even graphs and it is shown that for each pair of integers n, d with n even, d ≥ 2 and n ≥ 4d - 4 there exists an even graph of order n and diameter d. Several ways of constructing new even graphs from known ones are presented

    A generalization of Ore's Theorem involving neighborhood unions

    Get PDF
    AbstractLet G be a graph of order n. Settling conjectures of Chen and Jackson, we prove the following generalization of Ore's Theorem: If G is 2-connected and |N(u)∪N(v)|⩾12n for every pair of nonadjacent vertices u,v, then either G is hamiltonian, or G is the Petersen graph, or G belongs to one of three families of exceptional graphs of connectivity 2

    A generalization of a result of Häggkvist and Nicoghossian

    Get PDF
    Using a variation of the Bondy-Chvátal closure theorem the following result is proved: If G is a 2-connected graph with n vertices and connectivity κ such that d(x) + d(y) + d(z) ≥ n + κ for any triple of independent vertices x, y, z, then G is hamiltonian

    Long cycles, degree sums and neighborhood unions

    Get PDF
    AbstractFor a graph G, define the parameters α(G)=max{|S| |S is an independent set of vertices of G}, σk(G)=min{∑ki=1d(vi)|{v1,…,vk} is an independent set} and NCk(G)= min{|∪ki=1 N(vi)∥{v1,…,vk} is an independent set} (k⩾2). It is shown that every 1-tough graph G of order n⩾3 with σ3(G)⩾n+r⩾n has a cycle of length at least min{n,n+NCr+5+∈(n+r)(G)-α(G)}, where ε(i)=3(⌈13i⌉−13i). This result extends previous results in Bauer et al. (1989/90), Faßbender (1992) and Flandrin et al. (1991). It is also shown that a 1-tough graph G of order n⩾3 with σ3(G)⩾n+r⩾n has a cycle of length at least min{n,2NC⌊18(n+6r+17)⌋(G)}. Analogous results are established for 2-connected graphs
    corecore